Part Number Hot Search : 
UTT20N10 152K8X CC416 ANSY8009 2SK30191 MAX20 P706F SF802
Product Description
Full Text Search
 

To Download APW8814 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - j u n . , 2 0 1 1 a p w 8 8 1 4 w w w . a n p e c . c o m . t w 1 a n p e c r e s e r v e s t h e r i g h t t o m a k e c h a n g e s t o i m p r o v e r e l i a b i l i t y o r m a n u f a c t u r a b i l i t y w i t h o u t n o t i c e , a n d a d v i s e c u s t o m e r s t o o b t a i n t h e l a t e s t v e r s i o n o f r e l e v a n t i n f o r m a t i o n t o v e r i f y b e f o r e p l a c i n g o r d e r s . h i g h - p e r f o r m a n c e n o t e b o o k p w m c o n t r o l l e r f e a t u r e s g e n e r a l d e s c r i p t i o n adjustable output voltage from +0.75v to +5.5v - 0 . 7 5 v r e f e r e n c e v o l t a g e - 1% accuracy over-temperature operates from an input battery voltage range of +1.8v to +28v power-on-reset monitoring on vcc pin and pvcc pin excellent line and load transient responses pfm mode for increased light load efficiency programmable pwm frequency from 100khz to 500khz integrated mosfet drivers integrated bootstrap forward p-ch mosfet adjustable integrated soft-start and soft-stop selectable forced pwm or automatic pfm/pwm mode power good monitoring 70% under-voltage protection 125% over-voltage protection adjustable current-limit protection - using sense low-side mosfet?s r ds(on) over-temperature protection tqfn3x3-16 package lead free and green devices available (rohs compliant) a p p l i c a t i o n s notebook table pc hand-held portable aio pc the APW8814 is a single-phase, constant-on-time, synchronous pwm controller, which drives n-channel mosfets. the APW8814 steps down high voltage to generate low-voltage chipset or ram supplies in notebook computers. the APW8814 provides excellent transient response and accurate dc voltage output in either pfm or pwm mode. in pulse frequency mode (pfm), the APW8814 provides very high efficiency over light to heavy loads with loading- modulated switching frequencies. in pwm mode, the converter works nearly at constant frequency for low-noise requirements. the APW8814 is equipped with accurate positive current- limit, output under-voltage, and output over-voltage protections, perfect for nb applications. the power-on- reset function monitors the voltage on vcc and pvcc to prevent wrong operation during power-on. the APW8814 has a 1.2ms digital soft-start and built-in an integrated output discharge device for soft-stop. an internal integrated soft-start ramps up the output voltage with programmable slew rate to reduce the start-up current. a soft-stop function actively discharges the output capacitors. the APW8814 is available in 16pin tqfn package respectively. s i m p l i f i e d a p p l i c a t i o n c i r c u i t v out l q 1 q 2 APW8814 v in r ocset ocset r ton ton phase phase ugate lgate en vcc
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - j u n . , 2 0 1 1 a p w 8 8 1 4 w w w . a n p e c . c o m . t w 2 p i n c o n f i g u r a t i o n o r d e r i n g a n d m a r k i n g i n f o r m a t i o n n o t e : a n p e c l e a d - f r e e p r o d u c t s c o n t a i n m o l d i n g c o m p o u n d s / d i e a t t a c h m a t e r i a l s a n d 1 0 0 % m a t t e t i n p l a t e t e r m i n a t i o n f i n i s h ; w h i c h a r e f u l l y c o m p l i a n t w i t h r o h s . a n p e c l e a d - f r e e p r o d u c t s m e e t o r e x c e e d t h e l e a d - f r e e r e q u i r e m e n t s o f i p c / j e d e c j - s t d - 0 2 0 d f o r m s l c l a s s i f i c a t i o n a t l e a d - f r e e p e a k r e f l o w t e m p e r a t u r e . a n p e c d e f i n e s ? g r e e n ? t o m e a n l e a d - f r e e ( r o h s c o m p l i a n t ) a n d h a l o g e n f r e e ( b r o r c l d o e s n o t e x c e e d 9 0 0 p p m b y w e i g h t i n h o m o g e n e o u s m a t e r i a l a n d t o t a l o f b r a n d c l d o e s n o t e x c e e d 1 5 0 0 p p m b y w e i g h t ) . tqfn3x3-16 (top view) v o u t v c c f b p o k n c g n d p g n d l g a t e t o n e n n c b o o t u g a t e p h a s e o c s e t p v c c 1 10 8 7 6 5 4 3 2 9 1 3 1 4 12 11 1 6 1 5 apw 8814 handling code tem perature range package code package code qb : tqfn3x3-16 temperature range i : -40 to 85 o c handling code tr : tape & reel assembly material g : halogen and lead free device assembly material apw 8814 xxxxx apw 8814 qb : xxxxx - date code a b s o l u t e m a x i m u m r a t i n g s ( n o t e 1 ) symbol parameter rating unit v cc vcc supply voltage (vcc to gnd) - 0.3 ~ 7 v v pvcc pvcc supply voltage (pvcc to gnd) - 0.3 ~ 7 v v boot - gnd boot supply voltage (boot to gnd or pgnd ) - 0.3 ~ 3 5 v v o cset - gnd ocset supply voltage ( ocset to gnd or pgnd ) - 0.3 ~ 3 5 v v boot boot supply voltage (boot to phase) - 0.3 ~ 7 v all other pins (vout, ton, en and fb to gnd) - 0.3 ~ v cc +0.3 v ugate voltage (ugate to phase) <400ns p ulse w idth >400ns p ulse w idth - 5 ~ v boot +0.3 - 0.3 ~ v boot +0.3 v lgate voltage (lgate to gnd) <400ns p ulse w idth >400ns p ulse w idth - 5 ~ v cc +0.3 - 0.3 ~ v cc +0.3 v
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - j u n . , 2 0 1 1 a p w 8 8 1 4 w w w . a n p e c . c o m . t w 3 a b s o l u t e m a x i m u m r a t i n g s ( n o t e 1 ) ( c o n t . ) symbol parameter rating unit v phase phase voltage (phase to gnd) <400ns p ulse w idth >400ns p ulse w idth - 5 ~ 3 5 - 1 ~ 2 8 v v pok p ok supply voltage ( pok to gnd) - 0.3 ~ 7 v v pgnd pgnd to g nd voltage - 0.3 ~ 0.3 v t j maximum junction temperature 150 o c t stg storage temperature - 65 ~ 150 o c t sdr maximum soldering temperature, 10 seconds 260 o c note 1: absolute maximum ratings are those values beyond which the life of a device may be impaired. exposure to absolute maximum rating conditions for extended periods may affect device reliability. t h e r m a l c h a r a c t e r i s t i c s symbol parameter typical value unit q ja thermal resistance - junction to ambient (note 2 ) tqfn3x3 - 16 40 c/w note 2: q ja are measured with the component mounted on a high effective the thermal conductivity test board in free air. the exposed pad of package is soldered directly on the pcb. symbol parameter range unit v in converter input voltage 1.8 ~ 28 v vcc, pvcc vcc, pvcc supply voltage 4.5 ~ 5.5 v v out converter output voltage 0.75 ~ 5.5 v t a ambient temperature - 40 ~ 85 o c t j junction temperature - 40 ~ 125 o c r e c o m m e n d e d o p e r a t i n g c o n d i t i o n s ( n o t e 3 ) note 3: refer to the typical application circuit. e l e c t r i c a l c h a r a c t e r i s t i c s APW8814 symbol parameter test condition s min. typ. max. unit v out and v fb v oltage v out output v oltage adjustable output range 0.75 - 5.5 v v ref reference voltage - 0.75 - v t a = 25 o c - 0.5 - +0.5 % t a = 0 o c ~ 85 o c - 0.8 - +0.8 % regulation accuracy t a = - 40 o c ~ 85 o c - 1.0 - +1.0 % i fb fb input bias current fb = 0.75v - 0.02 0.1 m a r dis vout d ischarge r esistance en = 0v, v out = 0.5v - 20 50 w t h e s e s p e c i f i c a t i o n s a p p l y f o r t a = - 4 0 c t o + 8 5 c , u n l e s s o t h e r w i s e s t a t e d . a l l t y p i c a l s p e c i f i c a t i o n s t a = + 2 5 c , v c c = 5 v , v p v c c = 5 v .
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - j u n . , 2 0 1 1 a p w 8 8 1 4 w w w . a n p e c . c o m . t w 4 e l e c t r i c a l c h a r a c t e r i s t i c s ( c o n t . ) APW8814 symbol parameter test condition s min. typ. max. unit supply current vcc plus pvcc current, pwm, en = float, vfb = 0.77v, phase = - 0.1v - 400 750 m a i vcc vcc input bias current vcc plus pvcc current, pfm, en = 5v, vfb = 0.77v, phase = 0.5v - 250 520 m a i vcc_shdn vcc shutdown current en = gnd, vcc = 5v - 4.5 7.5 m a i vcc_shdn pvcc shutdown current en = gnd, pvcc = 5v - 0 1.0 m a on - time t imer and i nternal s oft - s tart t onn nominal on time v in = 15v, v out = 1.25v, r ton = 1m w 253 316 379 ns t on (min) minimum on time 80 110 140 ns t off (min) minimum off time v fb = 0.7v, v phase = - 0.1v, ocset = open 350 450 550 ns t ss internal s oft - s tart t ime from en = high to v out = 95% 0.9 1.2 1.5 ms gate driver ug pull - up resistance boot - ug = 0.5v - 5 7 w ug sink resistance ug - phase = 0.5v - 1 2.5 w l g pull - up resistance pvcc - lg = 0.5v - 5 7 w l g sink resistance lg - pgnd = 0.5v - 0.9 2.5 w ug to lg dead t ime ug falling to lg rising, no load - 40 - ns lg to ug dead t ime lg falling to ug rising, no load - 40 - ns bootstrap switch v f ron v pvcc - v boot - gnd , i f = 10ma - 0.5 0.8 v i r reverse leakage v boot - gnd = 30v, v phase = 25v, v pvcc = 5v - - 0.5 m a vcc por threshold v pvcc_thr rising p vcc por threshold voltage 4.2 4.35 4.45 v v vcc_thr ris ing vc c por threshold voltage 4.2 4.35 4.45 v vcc por hysteresis - 100 - mv control inputs en high threshold 2.5 2.65 2.8 v hysterisis 100 175 225 mv en float threshold 1.37 1.95 2.39 v en low threshold 0.7 1.0 1.3 v hysterisis 150 200 250 mv en = 0v - 0.1 1.0 en leakage en = 5 v - - 2.0 m a t h e s e s p e c i f i c a t i o n s a p p l y f o r t a = - 4 0 c t o + 8 5 c , u n l e s s o t h e r w i s e s t a t e d . a l l t y p i c a l s p e c i f i c a t i o n s t a = + 2 5 c , v c c = 5 v , v p v c c = 5 v .
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - j u n . , 2 0 1 1 a p w 8 8 1 4 w w w . a n p e c . c o m . t w 5 e l e c t r i c a l c h a r a c t e r i s t i c s ( c o n t . ) APW8814 symbol parameter test condition s min. typ. max. unit power - ok indicator pok in from lower (pok goes high) 87 90 93 % pok low hysteresis (pok goes low) - 3 - % v pok pok threshold pok out from normal (pok goes low) 120 125 130 % i pok p ok leakage current v pok = 5v - 0.1 1.0 m a p ok sink current v pok = 0.5v 2.5 7.5 - ma pok debounce time 43 63 85 m s pok enable delay time en high to pok high 1.4 2.0 2.6 ms current sense i ocset i ocset ocp threshold i ocset sourc ing 18 20 22 m a t ci ocset i ocset t emperature c oefficient o n t he b asis of 25c - 4500 - ppm/ o c v r ocset current - l imit t hreshold s etting r ange v ocset - gnd voltage, over a ll t emperature 30 - 200 mv over c urrent - l imit c omparator o ffset (v ocset - gnd - v pgnd - phase ) voltage, v ocset - gnd = 60mv - 10 0 10 mv zero c rossing c omparator o ffset v pgnd - phase voltage, en = 3.3v - 9.5 0.5 10.5 mv protection v uv uvp threshold 60 70 80 % uvp hysteresis - 3 - % uvp debounce interval - 16 - m s uvp enable delay en high to uvp workable 1.4 2 2.6 ms v ovr ovp rising threshold 120 125 130 % ovp propagation delay v fb rising, dv = 10mv - 1.5 - m s t otr otp rising threshold (note 4) - 160 - o c otp hyste r esis (note 4) - 25 - o c t h e s e s p e c i f i c a t i o n s a p p l y f o r t a = - 4 0 c t o + 8 5 c , u n l e s s o t h e r w i s e s t a t e d . a l l t y p i c a l s p e c i f i c a t i o n s t a = + 2 5 c , v c c = 5 v , v p v c c = 5 v . n o t e 4 : g u a r a n t e e d b y d e s i g n .
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - j u n . , 2 0 1 1 a p w 8 8 1 4 w w w . a n p e c . c o m . t w 6 p i n d e s c r i p t i o n pin no. tqfn3x3 - 16 name function 1 v out the vout pin makes a direct measurement of the converter output voltage. the vout pin should be connected to the top feedback resistor at the converter output. 2 vcc supply v oltage i nput p in for c ontrol c ircu itry. connect +5v from the vcc pin to the gnd pin. decoupling at least 1 m f of a mlcc capacitor from the vcc pin to the gnd pin. 3 fb output v oltage f eedback p in. this pin is connected to the resistive divider that set the desired output voltage. the p ok , uvp, and ovp circuits detect this signal to report output voltage status . 4 pok power good output. po k i s a n o pen d rain o utput used to in dicate the status of the output voltage. connect the pok into +5v through a pull - high resistor. 6 gnd signal g round for t he ic . 7 pgnd power g round of t he lg low - s ide mosfet d river. connec t the pin to the source of the low - side mosfet. 8 lgate output of t he l ow - side mosfet d river. connect this pin to gate of the low - side mosfet. swings from pgnd to vcc. 9 pvcc supply v oltage i nput p in for the lg low - side mosfet gate driver. connect +5v fr om the pvcc pin to the pgnd pin. decoupling at least 1 m f of a mlcc capacitor from the pvcc pin to the pgnd pin. 10 ocset current - limit threshold setting pin . there is an internal source current 20 m a through a resistor from ocset pin to phase. this pin is used to monitor the voltage drop across the drain and source of the low - side mo sfet for current - limit. 11 phase junction p oint of t he h igh - side mosfet source, o utput f ilter i nductor a nd t he l ow - side mosfet drain. connect this pin to the source of the hig h - side mosfet. phase serves as the lower supply rail for the u g high - side gate driver. 12 ugate output of t he h igh - side mosfet d river. connect this pin to gate of the high - side mosfet. 13 boot supply input for t he ug gate driver a nd a n i nternal l evel - shi ft c ircuit. connect to an external capacitor to create a boosted voltage suitable to drive a logic - level n - channel mosfet. 5,14 nc no internal connection 15 en enable p in of t he pwm c ontroller. when the en is above high logic level, the device is in aut omatic pfm/pwm mode. when the en is floating, t he device is in force pwm mode. when the en is below low logic level , the device is in shutdown and only low leakage current is taken from v cc and v in . 16 ton this p in is a llowed to a djust t he s witching f requ ency. connect a resistor r ton =400k w ~ 1500k w from ton pin to v in .
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - j u n . , 2 0 1 1 a p w 8 8 1 4 w w w . a n p e c . c o m . t w 7 t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s r e f e r e n c e v o l t a g e a c c u r a c y v s . j u n c t i o n t e m p e r a t u r e o c s e t s o u r c i n g c u r r e n t v s . j u n c t i o n t e m p e r a t u r e s w i t c h i n g f r e q u e n c y v s . c o n v e r t e r o u t p u t c u r r e n t c o n v e r t e r o u t p u t v o l t a g e v s . c o n v e r t e r o u t p u t c u r r e n t s w i t c h i n g f r e q u e n c y v s . t o n r e s i s t a n c e reference voltage accuracy, v ref (v) ocset sourcing current, iocset ( m a) 14 - 50 - 30 10 50 90 110 150 70 30 - 10 130 26 24 22 20 18 16 junction temperature , t j ( o c ) junction temperature , t j ( o c ) 0 . 740 0 . 745 0 . 750 0 . 755 0 . 760 - 50 - 30 10 50 90 110 70 30 - 10 0 . 1 s w i t c h i n g f r e q u e n c y , f s w ( k h z ) 0 . 001 0 . 01 0 . 1 1 10 converter output current , i out ( a ) 100 1000 10 1 100 forced - pwm mode automatic pfm / pwm mode v in = 19 v , v out = 1 . 05 v , f sw = 300 khz automatic pfm / pwm mode ?? ?? forced - pwm mode v in = 19 v , v out = 1 . 05 v , f sw = 200 khz 1 . 030 c o n v e r t e r o u t p u t v o l t a g e , v o u t ( v ) 0 converter output current , i out ( a ) 9 8 7 6 5 4 3 2 1 10 1 . 070 1 . 060 1 . 050 1 . 040 s w i t c h i n g f r e q u e n c y , f s w ( k h z ) 400 ton resistance , r ton ( k [ ) 600 800 700 400 500 300 200 100 1600 1400 1200 1000 800 600 v in = 19 v , forced - pwm mode ?? v out = 1 . 05 v v out = 2 . 5 v ??
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - j u n . , 2 0 1 1 a p w 8 8 1 4 w w w . a n p e c . c o m . t w 8 o p e r a t i n g w a v e f o r m s r e f e r t o t h e t y p i c a l a p p l i c a t i o n c i r c u i t . t h e t e s t c o n d i t i o n i s v i n = 1 9 v , t a = 2 5 o c u n l e s s o t h e r w i s e s p e c i f i e d . e n a b l e a t z e r o i n i t i a l v o l t a g e o f v o u t ch 1 : v en , 5 v / div , dc ch 2 : v out , 500 mv / div , dc ch 3 : v phase , 20 v / div , dc ch 4 : v pok , 5 v / div , dc time : 1 ms / div 1 4 3 2 i load = 5 a e n a b l e b e f o r e e n d o f s o f t - s t o p 1 4 2 3 no load ch 1 : v en , 5 v / div , dc ch 2 : v out , 500 mv / div , dc ch 3 : v phase , 20 v / div , dc ch 4 : v pok , 5 v / div , dc time : 1 ms / div s h u t d o w n a t i o u t = 5 a 1 4 2 3 ch 1 : v en , 5 v / div , dc ch 2 : v out , 500 mv / div , dc ch 3 : v phase , 20 v / div , dc ch 4 : v pok , 5 v / div , dc time : 20 g s / div s h u t d o w n w i t h s o f t - s t o p a t n o l o a d 1 4 2 3 ch 1 : v en , 5 v / div , dc ch 2 : v out , 500 mv / div , dc ch 3 : v phase , 20 v / div , dc ch 4 : v pok , 5 v / div , dc time : 20 ms / div
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - j u n . , 2 0 1 1 a p w 8 8 1 4 w w w . a n p e c . c o m . t w 9 o p e r a t i n g w a v e f o r m s r e f e r t o t h e t y p i c a l a p p l i c a t i o n c i r c u i t . t h e t e s t c o n d i t i o n i s v i n = 1 9 v , t a = 2 5 o c u n l e s s o t h e r w i s e s p e c i f i e d . c h 1 : v e n , 2 v / d i v , a c c h 2 : v o u t , 5 0 0 m v / d i v , d c c h 3 : v p h a s e , 2 0 v / d i v , d c c h 4 : v p o k , 5 v / d i v , d c t i m e : 5 0 0 m s / d i v v o u t = 1 . 0 5 v , l o a d t r a n s i e n t 1 a - > 8 a - > 1 a 1 2 3 ch 2 : i l , 5 a / div , dc ch 3 : i out , 5 a / div , dc time : 20 g s / div ch 1 : v out , 100 mv / div , ac v o u t = 2 . 5 v , l o a d t r a n s i e n t 1 a - > 1 0 a - > 1 a 1 2 3 ch 2 : i l , 5 a / div , dc time : 20 g s / div ch 1 : v out , 100 mv / div , ac ch 3 : i out , 5 a / div , dc power on at automatic mode 1 4 2 3 no load ch 1 : v en , 5 v / div , ac ch 2 : v out , 500 mv / div , dc ch 3 : v phase , 20 v / div , dc ch 4 : v pok , 5 v / div , dc time : 500 g s / div power on at forced pwm mode 1 4 2 3 no load
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - j u n . , 2 0 1 1 a p w 8 8 1 4 w w w . a n p e c . c o m . t w 1 0 o p e r a t i n g w a v e f o r m s r e f e r t o t h e t y p i c a l a p p l i c a t i o n c i r c u i t . t h e t e s t c o n d i t i o n i s v i n = 1 9 v , t a = 2 5 o c u n l e s s o t h e r w i s e s p e c i f i e d . c h 1 : v o u t , 1 v / d i v , d c c h 2 : v u g a t e , 2 0 v / d i v , d c c h 3 : v l g a t e , 5 v / d i v , d c c h 4 : i l , 1 0 a / d i v , d c t i m e : 2 0 m s / d i v c h 1 : v o u t , 2 v / d i v , d c c h 2 : v u g a t e , 2 0 v / d i v , d c c h 3 : v l g a t e , 5 v / d i v , d c c h 4 : i l , 1 0 a / d i v , d c t i m e : 2 0 m s / d i v under-voltage protection 1 4 3 2 short circuit test short circuit test 1 4 2 3 in pfm mode power on in short circuit 1 4 3 2 ch 2 : v lgate , 5 v / div , dc ch 3 : v out , 200 mv / div , dc time : 1 ms / div ch 1 : v ugate , 20 v / div , dc ch 4 : i l , 10 a / div , dc over-voltage protection 4 3 1 2 ch 2 : v lgate , 5 v / div , dc ch 3 : v out , 1 v / div , dc time : 50 8 s / div ch 1 : v ugate , 20 v / div , dc ch 4 : v pok , 5 v / div , dc
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - j u n . , 2 0 1 1 a p w 8 8 1 4 w w w . a n p e c . c o m . t w 1 1 b l o c k d i a g r a m fb error comparator ov uv 70% v ref 125% v ref v ref por vcc en digital soft start/soft sop p w m s i g n a l c o n t r o l l e r v cc ug lg thermal shutdown pok vout force pwm or automatic pfm/ pwm selection frequency adjustable ton fault latch logic on-time generator 90% v ref 125% v ref z c phase 20 m a current- limit delay v pv cc boot phase pvcc pgnd gnd ocset
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - j u n . , 2 0 1 1 a p w 8 8 1 4 w w w . a n p e c . c o m . t w 1 2 t y p i c a l a p p l i c a t i o n c i r c u i t en pok pvcc vcc gnd ug boot phase ocset lg pgnd vout fb ton r pok r vcc + 5 v c vcc c out r gnd q 1 q2 l out 1.5 m h c boot r ocset APW8814 c in v pok v in v out 1.05v/10a 3.9k w ,5% apm4350 apm4354 10 m f 330 m f 10k w ,1% 19v 100k w 2.2 w 0.1 m f 1 m f r ton 750k w r top 3.9k w ,1% c fb 10nf
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - j u n . , 2 0 1 1 a p w 8 8 1 4 w w w . a n p e c . c o m . t w 1 3 f u n c t i o n d e s c r i p t i o n constant-on-time pwm controller with input feed-for- ward the constant-on-time control architecture is a pseudo- fixed frequency with input voltage feed-forward. this ar- chitecture relies on the output filter capacitor?s effective series resistance (esr) to act as a current-sense resistor, so the output ripple voltage provides the pwm ramp signal. in pfm operation, the high-side switch on-time controlled by the on-time generator is determined solely by a oneshot whose pulse width is inversely proportional to input volt- age and directly proportional to output voltage. in pwm operation, the high-side switch on-time is determined by a switching frequency control circuit in the on-time gen- erator block. t h e s w i t c h i n g f r e q u e n c y c o n t r o l c i r c u i t s e n s e s t h e s w i t c h - i n g f r e q u e n c y o f t h e h i g h - s i d e s w i t c h a n d k e e p s r e g u l a t - i n g i t a t a c o n s t a n t f r e q u e n c y i n p w m m o d e . t h e d e s i g n i m p r o v e s t h e f r e q u e n c y v a r i a t i o n a n d i s m o r e o u t s t a n d - i n g t h a n a c o n v e n t i o n a l c o n s t a n t - o n - t i m e c o n t r o l l e r , w h i c h h a s l a r g e s w i t c h i n g f r e q u e n c y v a r i a t i o n o v e r i n p u t v o l t a g e , o u t p u t c u r r e n t , a n d t e m p e r a t u r e . b o t h i n p f m a n d p w m , t h e o n - t i m e g e n e r a t o r , w h i c h s e n s e s i n p u t v o l t a g e o n t o n p i n , p r o v i d e s v e r y f a s t o n - t i m e r e s p o n s e t o i n p u t l i n e t r a n s i e n t s . a n o t h e r o n e - s h o t s e t s a m i n i m u m o f f - t i m e ( t y p i c a l : 4 5 0 n s ) . t h e o n - t i m e o n e - s h o t i s t r i g g e r e d i f t h e e r r o r c o m - p a r a t o r i s h i g h , t h e l o w - s i d e s w i t c h c u r r e n t i s b e l o w t h e c u r r e n t - l i m i t t h r e s h o l d , a n d t h e m i n i m u m o f f - t i m e o n e s h o t h a s t i m e d o u t . pulse-frequency modulation (pfm) i n p f m m o d e , a n a u t o m a t i c s w i t c h o v e r t o p u l s e - f r e q u e n c y m o d u l a t i o n ( p f m ) t a k e s p l a c e a t l i g h t l o a d s . t h i s s w i t c h o v e r i s a f f e c t e d b y a c o m p a r a t o r t h a t t r u n c a t e s t h e l o w - s i d e s w i t c h o n - t i m e a t t h e i n d u c t o r c u r r e n t z e r o c r o s s i n g . t h i s m e c h a n i s m c a u s e s t h e t h r e s h o l d b e t w e e n p f m a n d p w m o p e r a t i o n t o c o i n c i d e w i t h t h e b o u n d a r y b e t w e e n c o n t i n u o u s a n d d i s c o n t i n u o u s i n d u c t o r - c u r r e n t o p e r a t i o n ( a l s o k n o w n a s t h e c r i t i c a l c o n d u c t i o n p o i n t ) . t h e o n - t i m e o f p f m i s g i v e n b y : w h e r e f s w i s t h e n o m i n a l s w i t c h i n g f r e q u e n c y o f t h e c o n - v e r t e r i n p w m m o d e . t h e l o a d c u r r e n t a t h a n d o f f f r o m p f m t o p w m m o d e i s g i v e n b y : v v f 1 t in out sw pfm - on = in out sw out in pfm - on out in pwm) to load(pfm v v x f 1 2l v v t l v v 2 1 i - = - = forced-pwm mode the forced-pwm mode disables the zero-crossing comparator, which truncates the low-side switch on-time at the inductor current zero crossing. this causes the low-side gate-drive waveform to become the complement of the high-side gate-drive waveform. this in turn causes the inductor current to reverse at light loads while ugate maintains a duty factor of v out /v in . the benefit of forced- pwm mode is to keep the switching frequency fairly constant. the forced-pwm mode is the most useful for reducing audio frequency noise, improving load-transient response, and providing sink-current capability for dy- namic output voltage adjustment. power-on-reset a power-on-reset (por) function is designed to prevent wrong logic controls when the pvcc or vcc voltage is low. the por function continually monitors the bias sup- ply voltage on the pvcc and vcc pins if at least one of the enable pins is set high. when the rising pvcc volt- age reaches the rising pvcc por voltage threshold (4.35v, typical) and the rising vcc voltage reaches the rising vcc por threshold (4.35v, typical), the por sig- nal goes high and the chip initiates soft-start operations. there is almost no hysteresis to por voltage threshold ( a b o u t 1 0 0 m v t y p i c a l ) . when pvcc voltage drops lower than 4.25v (typical) or vcc voltage drops lower than 4.25v (typical), the por disables the chip. en pin control when v en is above the en high threshold (2.65v, typical), the converter is enabled in automatic pfm/pwm opera- tion mode. when en pin is floating, APW8814 internal circuit will pull v en up to 1.95v (typical). furthermore, APW8814 is in forced-pwm operation mode. when v en
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - j u n . , 2 0 1 1 a p w 8 8 1 4 w w w . a n p e c . c o m . t w 1 4 f u n c t i o n d e s c r i p t i o n ( c o n t . ) f i g u r e 1 . s o f t - s t a r t s e q u e n c e 1.2ms 2ms en v out v cc and v pvcc v pgood during soft-start stage before the pgood pin is ready, the under-voltage protection is prohibited. the over-volt- age and current-limit protection functions are enabled. if the output capacitor has residue voltage before start-up, both low-side and high-side mosfets are in off-state until the internal digital soft-start voltage equals to the v fb voltage. this will ensure that the output voltage starts from its existing voltage level. in the event of under-voltage, over-voltage, over- power ok indicator the APW8814 features an open-drain pok pin to indi- cate output regulation status. in normal operation, when the output voltage rises 90% of its target value, the pok goes high after 63 m s internal delay. when the output volt- age outruns 70% or 125% of the target voltage, pok sig- nal will be pulled low immediately. since the fb pin is used for both feedback and monitor- ing purposes, the output voltage deviation can be coupled directly to the fb pin by the capacitor in parallel with the voltage divider as shown in the typical applications. in order to prevent false pok from dropping, capacitors need to parallel at the output to confine the voltage deviation with severe load step transient. under-voltage protection (uvp) in the operational process, if a short-circuit occurs, the output voltage will drop quickly. when load current is big- ger than current-limit threshold value, the output voltage will fall out of the required regulation range. the under- voltage protection circuit continually monitors the fb volt- age after soft-start is completed. if a load step is strong enough to pull the output voltage lower than the under- voltage threshold, the under-voltage threshold is 70% of the nominal output voltage, the internal uvp delay counter starts to count. after 16 m s debounce time, the device turns off both high-side and low-side mosefet with latched and starts a soft-stop process to shut down the output gradually. toggling enable pin to low or recycling pvcc or vcc, will clear the latch and bring the chip back to operation. o v e r - v o l t a g e p r o t e c t i o n ( o v p ) the over-voltage function monitors the output voltage by fb pin. when the fb voltage increases over 125% of the reference voltage due to the high-side mosfet failure or for other reasons, the over-voltage protection compara- tor designed with a 1.5 m s noise filter will force the low- side mosfet gate driver fully turn on and latch high. this is below the en low threshold (1v, typical), the chip is in the shutdown and only low leakage current is taken from vcc. en pin control (cont.) d i g i t a l s o f t - s t a r t t h e a p w 8 8 1 4 i n t e g r a t e s d i g i t a l s o f t - s t a r t c i r c u i t s t o r a m p u p t h e o u t p u t v o l t a g e o f t h e c o n v e r t e r t o t h e p r o g r a m m e d r e g u l a t i o n s e t p o i n t a t a p r e d i c t a b l e s l e w r a t e . t h e s l e w r a t e o f o u t p u t v o l t a g e i s i n t e r n a l l y c o n t r o l l e d t o l i m i t t h e i n r u s h c u r r e n t t h r o u g h t h e o u t p u t c a p a c i t o r s d u r i n g s o f t - s t a r t p r o c e s s . t h e f i g u r e 1 s h o w s s o f t - s t a r t s e q u e n c e . w h e n t h e e n p i n i s p u l l e d a b o v e t h e r i s i n g e n t h r e s h o l d v o l t a g e , t h e d e v i c e i n i t i a t e s a s o f t - s t a r t p r o c e s s t o r a m p u p t h e o u t p u t v o l t a g e . t h e s o f t - s t a r t i n t e r v a l i s 1 . 2 m s ( t y p i c a l ) a n d i n d e p e n d e n t o f t h e u g a t e s w i t c h i n g f r e q u e n c y . temperature, or shutdown, the chip enables the soft-stop function. the soft-stop function discharges the output voltages to the pgnd through an internal 20 w switch.
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - j u n . , 2 0 1 1 a p w 8 8 1 4 w w w . a n p e c . c o m . t w 1 5 f u n c t i o n d e s c r i p t i o n ( c o n t . ) f i g u r e 2 . c u r r e n t - l i m i t a l g o r i t h m c u r r e n t - l i m i t the current-limit circuit employs a ?valley? current-sens- ing algorithm (see figure 2). the APW8814 uses the low-side mosfet?s r ds(on) of the synchronous rectifier as a current-sensing element. if the magnitude of the current-sense signal at phase pin is above the current- limit threshold, the pwm is not allowed to initiate a new cycle. the actual peak current is greater than the current- limit threshold by an amount equals to the inductor ripple current. therefore, the exact current-limit characteristic and maximum load capability are the functions of the sense resistance, inductor value, and input voltage. time i n d u c t o r c u r r e n t , i l 0 i out i peak i limit d i the pwm controller uses the low-side mosfets on-re- sistance r ds(on) to monitor the current for protection against shortened outputs. the mosfet?s r ds(on) is var- ied by temperature and gate to source voltage, the user should determine the maximum r ds(on) in manufacture?s datasheet. when lg is turned on, the ocset pin can source 20 m a where r ocset is the resistor of current-limit setting threshold. r ds(on) is the low side mosfets conducive resistance. i limit is the setting current-limit threshold. i limit can be expressed as i out minus half of peak-to-peak in- ductor current. the pcb layout guidelines should ensure that noise and dc errors do not corrupt the current-sense signals at phase. place the hottest power mosefts as close to the ic as possible for best thermal coupling. when com- bined with the under-voltage protection circuit, this cur- rent-limit method is effective in almost every circumstance. over-temperature protection (otp) when the junction temperature increases above the ris- ing threshold temperature t otr , the ic will enter the over- temperature protection state that suspends the pwm, which forces the ugate and lgate gate drivers output low. the thermal sensor allows the converters to start a start-up process and regulate the output voltage again after the junction temperature cools by 25 o c. the otp is designed with a 25 o c hysteresis to lower the average t j during continuous thermal overload conditions, which in- creases lifetime of the APW8814. p r o g r a m m i n g t h e o n - t i m e c o n t r o l a n d p w m s w i t c h - i n g f r e q u e n c y t h e a p w 8 8 1 4 d o e s n o t u s e a c l o c k s i g n a l t o p r o d u c e p w m . t h e d e v i c e u s e s t h e c o n s t a n t - o n - t i m e c o n t r o l a r - c h i t e c t u r e t o p r o d u c e p s e u d o - f i x e d f r e q u e n c y w i t h i n p u t v o l t a g e f e e d - f o r w a r d . t h e o n - t i m e p u l s e w i d t h i s p r o p o r - t i o n a l t o o u t p u t v o l t a g e v o u t a n d i n v e r s e s p r o p o r t i o n a l t o i n p u t v o l t a g e v i n . i n p w m , t h e o n - t i m e c a l c u l a t i o n i s w r i t - t e n a s b e l o w : ( ) ns 0 5 v v 05 . 0 v 4 1 r 10 11 t in out ton 12 on + ? ? + = - o v e r - v o l t a g e p r o t e c t i o n ( o v p ) ( c o n t . ) action actively pulls down the output voltage. in the meantime, the output voltage is also pulled low by inter- nal discharge transistor. this ovp scheme only clamps the voltage overshoot and does not invert the output voltage when otherwise acti- vated with a continuously high output from low-side mosfet driver. it?s a common problem for ovp schemes with a latch. once an over-voltage fault condition is set, it can only be reset by toggling en, pvcc or vcc power- on-reset signal. through an external resistor for adjusting current-limit threshold. the voltage at ocset pin is equal to v phase +20 m a x r ocset . the relationship between the sampled voltage v ocset and the current-limit threshold i limit is given by: 20 m a x r ocset = i limit x r ds(on)
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - j u n . , 2 0 1 1 a p w 8 8 1 4 w w w . a n p e c . c o m . t w 1 6 f u n c t i o n d e s c r i p t i o n ( c o n t . ) p r o g r a m m i n g t h e o n - t i m e c o n t r o l a n d p w m s w i t c h - i n g f r e q u e n c y ( c o n t . ) w h e r e : r t o n i s t h e r e s i s t o r c o n n e c t e d f r o m t o n p i n t o p h a s e p i n . f u r t h e r m o r e , t h e a p p r o x i m a t e p w m s w i t c h i n g f r e - q u e n c y i s w r i t t e n a s : on in out sw sw on t v v f f t = t = d where: f sw is the pwm switching frequency. APW8814 doesn?t have vin pin to calculate on-time pulse width. therefore, monitoring v ton voltage as input voltage to calculate on-time. and then, use the relationship be- tween ontime and duty cycle to obtain the switching frequency. the curve below is the relationship between r ton and the switching frequency f sw .
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - j u n . , 2 0 1 1 a p w 8 8 1 4 w w w . a n p e c . c o m . t w 1 7 a p p l i c a t i o n i n f o r m a t i o n where 0.75 is the reference voltage, r top is the resistor connected from converter?s output to fb, and r gnd is the resistor connected from fb to gnd. suggested r gnd is in the range from 1k to 20k w . to prevent stray pickup, locate resistors r top and r gnd close to APW8814. o u t p u t i n d u c t o r s e l e c t i o n t h e d u t y c y c l e ( d ) o f a b u c k c o n v e r t e r i s t h e f u n c t i o n o f t h e i n p u t v o l t a g e a n d o u t p u t v o l t a g e . o n c e a n o u t p u t v o l t a g e i s f i x e d , i t c a n b e w r i t t e n a s : in out v v d = in out sw out in ripple v v l f v - v i = o u t p u t c a p a c i t o r s e l e c t i o n the inductor value (l) determines the inductor ripple current, i ripple , and affects the load transient reponse. higher inductor value reduces the inductor?s ripple cur- rent and induces lower output ripple voltage. the ripple current and ripple voltage can be approximated by: esr ripple esr sw out ripple out c r i v f 8c i v = d = d o u t p u t v o l t a g e s e t t i n g the output voltage is adjustable from 0.75v to 5.5v with a resistor-divider connected with fb, gnd, and converter?s output. using 1% or better resistors for the resistor-di- vider is recommended. the output voltage is determined by: w h e r e f s w i s t h e s w i t c h i n g f r e q u e n c y o f t h e r e g u l a t o r . a l t h o u g h t h e i n d u c t o r v a l u e a n d f r e q u e n c y a r e i n c r e a s e d a n d t h e r i p p l e c u r r e n t a n d v o l t a g e a r e r e d u c e d , a t r a d e o f f e x i s t s b e t w e e n t h e i n d u c t o r ? s r i p p l e c u r r e n t a n d t h e r e g u - l a t o r l o a d t r a n s i e n t r e s p o n s e t i m e . a smaller inductor will give the regulator a faster load transient response at the expense of higher ripple current. increasing the switching frequency (f sw ) also reduces the ripple current and voltage, but it will increase the switching loss of the mosfets and the power dissipa- tion of the converter. the maximum ripple current occurs at the maximum input voltage. a good starting point is to choose the ripple current to be approximately 30% of the maximum output current. once the inductance value has been chosen, selecting an inductor which is capable of carrying the required peak current without going into saturation. in some types of inductors, especially core that is made of ferrite, the ripple current will increase abruptly when it saturates. this results in a larger output ripple voltage. besides, the inductor needs to have low dcr to reduce the loss of efficiency. o u tp ut voltage ripple and the transient volta ge devia- tion are factors which have to be taken into con sider- ation when selecting an output capacitor. higher capaci- tor value and lower esr reduce the out put ripple and the load transient drop. therefore, selecting high per- formance low esr capacitors is recommended for switching regulator applications. in addition to h igh frequency noise related to mosfet turn-on and turn - o ff, the output voltage ripple includes the capaci tance voltage drop d v cout and esr voltage drop d v esr caused by the ac peak-to-peak inductor?s current. t h e s e t w o v o l t a g e s c a n b e r e p r e s e n t e d b y : these two components constitute a large portion of the total output voltage ripple. in some applications, multiple capacitors have to be paralleled to achieve the desired esr value. if the output of the converter has to support another load with high pulsating current, more capaci- tors are needed in order to reduce the equivalent esr and suppress the voltage ripple to a tolerable level. a small decoupling capacitor (1 m f) in parallel for bypass- ing the noise is also recommended, and the voltage rat- ing of the output capacitors are also must be considered. to support a load transient that is faster than the switch- ing frequency, more capacitors are needed for reducing the voltage excursion during load step change. another aspect of the capacitor selection is that the total ac cur- rent going through the capacitors has to be less than the rated rms current specified on the capacitors in order to prevent the capacitor from over-heating. ? ? ? ? ? + = gnd top out r r 1 0.75 v i n p u t c a p a c i t o r s e l e c t i o n t h e i n p u t c a p a c i t o r i s c h o s e n b a s e d o n t h e v o l t a g e r a t i n g a n d t h e r m s c u r r e n t r a t i n g . f o r r e l i a b l e o p e r a t i o n , s e l e c t - i n g t h e c a p a c i t o r v o l t a g e r a t i n g t o b e a t l e a s t 1 . 3 t i m e s
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - j u n . , 2 0 1 1 a p w 8 8 1 4 w w w . a n p e c . c o m . t w 1 8 a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) i n p u t c a p a c i t o r s e l e c t i o n ( c o n t . ) m o s f e t s e l e c t i o n t h e a p p l i c a t i o n f o r a n o t e b o o k b a t t e r y w i t h a m a x i m u m v o l t a g e o f 2 4 v , a t l e a s t a m i n i m u m 3 0 v m o s f e t s s h o u l d b e u s e d . t h e d e s i g n h a s t o t r a d e o f f t h e g a t e c h a r g e w i t h t h e r ds(on) o f t h e m o s f e t : t h e s e l e c t i o n o f t h e n - c h a n n e l p o w e r m o s f e t s a r e d e t e r m i n e d b y t h e r ds(on) , r e v e r s i n g t r a n s f e r c a p a c i - t a n c e ( c r s s ) a n d m a x i m u m o u t p u t c u r r e n t r e q u i r e m e n t . t h e l o s s e s i n t h e m o s f e t s h a v e t w o c o m p o n e n t s : c o n d u c t i o n l o s s a n d t r a n s i t i o n l o s s . f o r t h e h i g h - s i d e a n d l o w - s i d e m o s f e t s , t h e l o s s e s a r e a p p r o x i m a t e l y g i v e n b y t h e f o l l o w i n g e q u a t i o n s : p high-side = i out 2 (1+ tc)(r ds(on) )d + (0.5)( i out )(v in )( t sw )f s w p low-side = i out 2 (1+ tc)(r ds(on) )(1-d) l a y o u t c o n s i d e r a t i o n i n a n y h i g h s w i t c h i n g f r e q u e n c y c o n v e r t e r , a c o r r e c t l a y o u t i s i m p o r t a n t t o e n s u r e p r o p e r o p e r a t i o n o f t h e r e g u l a t o r . w i t h p o w e r d e v i c e s s w i t c h i n g a t h i g h e r f r e q u e n c y , t h e r e s u l t i n g c u r r e n t t r a n s i e n t w i l l c a u s e v o l t a g e s p i k e a c r o s s t h e i n t e r c o n n e c t i n g i m p e d a n c e a n d p a r a s i t i c c i r c u i t e l e m e n t s . a s a n e x a m p l e , c o n s i d e r t h e t u r n - o f f t r a n s i t i o n o f t h e p w m m o s f e t . b e f o r e t u r n - o f f c o n d i t i o n , t h e m o s f e t i s c a r r y i n g t h e f u l l l o a d c u r r e n t . d u r i n g t u r n - o f f , c u r r e n t s t o p s f l o w i n g i n t h e m o s f e t a n d i s f r e e w h e e l i n g b y t h e l o w s i d e m o s f e t a n d p a r a s i t i c d i o d e . a n y p a r a s i t i c i n d u c t a n c e o f t h e c i r c u i t g e n e r a t e s a l a r g e v o l t a g e s p i k e d u r i n g t h e s w i t c h i n g i n t e r v a l . i n g e n e r a l , u s i n g s h o r t a n d w i d e p r i n t e d c i r c u i t t r a c e s s h o u l d m i n i m i z e i n t e r c o n n e c t - i n g i m p e d a n c e s a n d t h e m a g n i t u d e o f v o l t a g e s p i k e . b e s i d e s , s i g n a l a n d p o w e r g r o u n d s a r e t o b e k e p t s e p a - r a t i n g a n d f i n a l l y c o m b i n e d u s i n g g r o u n d p l a n e c o n s t r u c - t i o n o r s i n g l e p o i n t g r o u n d i n g . t h e b e s t t i e - p o i n t b e t w e e n the signal ground and the power ground is at the nega- tive side of the output capacitor on each channel, where there is less noise. noisy traces beneath the ic are not recommended. below is a checklist for your layout: f o r t h e l o w - s i d e m o s f e t , b e f o r e i t i s t u r n e d o n , t h e b o d y d i o d e h a s b e e n c o n d u c t i n g . t h e l o w - s i d e m o s f e t d r i v e r w i l l n o t c h a r g e t h e m i l l e r c a p a c i t o r o f t h i s m o s f e t . i n t h e t u r n i n g o f f p r o c e s s o f t h e l o w - s i d e m o s f e t , t h e l o a d c u r r e n t w i l l s h i f t t o t h e b o d y d i o d e f i r s t . t h e h i g h d v / d t o f t h e p h a s e n o d e v o l t a g e w i l l c h a r g e t h e m i l l e r c a p a c i - t o r t h r o u g h t h e l o w - s i d e m o s f e t d r i v e r s i n k i n g c u r r e n t p a t h . t h i s r e s u l t s i n m u c h l e s s s w i t c h i n g l o s s o f t h e l o w - s i d e m o s f e t s . t h e d u t y c y c l e i s o f t e n v e r y s m a l l i n h i g h b a t t e r y v o l t a g e a p p l i c a t i o n s , a n d t h e l o w - s i d e m o s f e t w i l l c o n d u c t m o s t o f t h e s w i t c h i n g c y c l e ; t h e r e f o r e , when using smaller r ds(on) of the low-side mosfet, the con- verter can reduce power loss. t h e g a t e c h a r g e f o r t h i s m o s f e t i s u s u a l l y t h e s e c o n d a r y c o n s i d e r a t i o n . t h e h i g h - s i d e m o s f e t d o e s n o t h a v e t h i s z e r o v o l t a g e s w i t c h - i n g c o n d i t i o n ; i n a d d i t i o n , i t c o n d u c t s f o r l e s s t i m e c o m - p a r e d t o t h e l o w - s i d e m o s f e t , s o t h e s w i t c h i n g l o s s t e n d s t o b e d o m i n a n t . p r i o r i t y s h o u l d b e g i v e n t o t h e m o s f e t s w i t h l e s s g a t e c h a r g e , s o t h a t b o t h t h e g a t e d r i v e r l o s s a n d s w i t c h i n g l o s s w i l l b e m i n i m i z e d . where i out is the load current tc is the temperature dependency of r ds(on) f sw is the switching frequency t sw is the switching interval d is the duty cycle note that both mosfets have conduction losses while the high- side mosfet includes an additional transi tion loss. t he switching interval , t sw , is the function of the reverse transfer capacitance c rss . the (1+tc) term is a factor in the temperature dependency of the r ds(on) and can be extracted from the ?r ds(on) vs. temperature? curve of the power mosfet. h i g h e r t h a n t h e m a x i m u m i n p u t v o l t a g e . t h e m a x i m u m r m s c u r r e n t r a t i n g r e q u i r e m e n t i s a p p r o x i m a t e l y i o u t / 2 , w h e r e i o u t i s t h e l o a d c u r r e n t . d u r i n g p o w e r - u p , t h e i n p u t c a p a c i t o r s h a v e t o h a n d l e g r e a t a m o u n t o f s u r g e c u r r e n t . f o r l o w - d u t y n o t e b o o k a p p l i a c t i o n s , c e r a m i c c a p a c i t o r i s r e c o m m e n d e d . t h e c a p a c i t o r s m u s t b e c o n n e c t e d b e - t w e e n t h e d r a i n o f h i g h - s i d e m o s f e t a n d t h e s o u r c e o f l o w - s i d e m o s f e t w i t h v e r y l o w - i m p e a d a n c e p c b l a y o u t . k e e p t h e s w i t c h i n g n o d e s ( u g a t e , l g a t e , b o o t , a n d p h a s e ) a w a y f r o m s e n s i t i v e s m a l l s i g n a l n o d e s s i n c e t h e s e n o d e s a r e f a s t m o v i n g s i g n a l s . t h e r e f o r e , k e e p t r a c e s t o t h e s e n o d e s a s s h o r t a s
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - j u n . , 2 0 1 1 a p w 8 8 1 4 w w w . a n p e c . c o m . t w 1 9 locate the resistor-divider close to the fb pin to mini- mize the high impedance trace. in addition, fb pin traces can?t be close to the switching signal traces (ugate, lgate, boot, and phase). a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) l a y o u t c o n s i d e r a t i o n ( c o n t . ) t h e s i g n a l s g o i n g t h r o u g h t h e s e s t r a c e s h a v e b o t h h i g h d v / d t a n d h i g h d i / d t w i t h h i g h p e a k c h a r g i n g a n d d i s c h a r g i n g c u r r e n t . t h e t r a c e s f r o m t h e g a t e d r i v e r s t o t h e m o s f e t s ( u g a t e a n d l g a t e ) s h o u l d b e s h o r t a n d w i d e . p l a c e t h e s o u r c e o f t h e h i g h - s i d e m o s f e t a n d t h e d r a i n o f t h e l o w - s i d e m o s f e t a s c l o s e a s p o s s i b l e . m i n i m i z i n g t h e i m p e d a n c e w i t h w i d e l a y o u t p l a n e b e - t w e e n t h e t w o p a d s r e d u c e s t h e v o l t a g e b o u n c e o f t h e n o d e . i n a d d i t i o n , t h e l a r g e l a y o u t p l a n e b e t w e e n t h e d r a i n o f t h e m o s f e t s ( v i n a n d p h a s e n o d e s ) c a n g e t b e t t e r h e a t s i n k i n g . the pgnd is the current sensing circuit reference ground and also the power ground of the lgate low- side mosfet. on the other hand, the pgnd trace should be a separate trace and independently go to the source of the low-side mosfet. besides, the cur- rent sense resistor should be close to ocset pin to avoid parasitic capacitor effect and noise coupling. d e c o u p l i n g c a p a c i t o r s , t h e r e s i s t o r - d i v i d e r , a n d b o o t c a p a c i t o r s h o u l d b e c l o s e t o t h e i r p i n s . ( f o r e x a m p l e , p l a c e t h e d e c o u p l i n g c e r a m i c c a p a c i t o r c l o s e t o t h e d r a i n o f t h e h i g h - s i d e m o s f e t a s c l o s e a s p o s s i b l e . ) t h e i n p u t b u l k c a p a c i t o r s s h o u l d b e c l o s e t o t h e d r a i n o f t h e h i g h - s i d e m o s f e t , a n d t h e o u t p u t b u l k c a p a c i - t o r s s h o u l d b e c l o s e t o t h e l o a d s . t h e i n p u t c a p a c i - t o r ? s g r o u n d s h o u l d b e c l o s e t o t h e g r o u n d s o f t h e o u t p u t c a p a c i t o r s a n d l o w - s i d e m o s f e t . p o s s i b l e a n d t h e r e s h o u l d b e n o o t h e r w e a k s i g n a l t r a c e s i n p a r a l l e l w i t h t h e s e s t r a c e s o n a n y l a y e r .
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - j u n . , 2 0 1 1 a p w 8 8 1 4 w w w . a n p e c . c o m . t w 2 0 p a c k a g e i n f o r m a t i o n t q f n 3 x 3 - 1 6 d e pin 1 a b a1 a3 d2 e 2 e pin 1 corner k l note : follow jedec mo-220 weed-4. s y m b o l min. max. 0.80 0.00 0.18 0.30 1.50 1.80 0.05 1.50 a a1 b d d2 e e2 e l millimeters a3 0.20 ref tqfn3x3-16 0.30 0.50 1.80 0.008 ref min. max. inches 0.031 0.000 0.007 0.012 0.059 0.071 0.059 0.012 0.020 0.70 0.071 0.028 0.002 0.50 bsc 0.020 bsc k 0.20 0.008 2.90 3.10 0.114 0.122 2.90 3.10 0.114 0.122
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - j u n . , 2 0 1 1 a p w 8 8 1 4 w w w . a n p e c . c o m . t w 2 1 application a h t1 c d d w e1 f 330 ? 2.00 50 min. 12.4+2.00 - 0.00 13.0+0.50 - 0.20 1.5 min. 20.2 min. 12.0 ? 0.30 1.75 ? 0.10 5.5 ? 0.05 p 0 p1 p 2 d 0 d1 t a 0 b 0 k 0 tqfn3x3 - 16 4.0 ? 0.10 8.0 ? 0.10 2.0 ? 0.05 1.5+0.10 - 0.00 1.5 min. 0.6+0.00 - 0 .40 3.30 ? 0.20 3.30 ? 0.20 1.30 ? 0.20 (mm) c a r r i e r t a p e & r e e l d i m e n s i o n s a e 1 a b w f t p0 od0 b a0 p2 k0 b 0 section b-b section a-a od1 p1 h t1 a d d e v i c e s p e r u n i t package type unit quantity tqfn3x3 - 16 tape & reel 3000
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - j u n . , 2 0 1 1 a p w 8 8 1 4 w w w . a n p e c . c o m . t w 2 2 c l a s s i f i c a t i o n p r o f i l e t a p i n g d i r e c t i o n i n f o r m a t i o n t q f n 3 x 3 - 1 6 user direction of feed
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - j u n . , 2 0 1 1 a p w 8 8 1 4 w w w . a n p e c . c o m . t w 2 3 c l a s s i f i c a t i o n r e f l o w p r o f i l e s profile feature sn - pb eutectic assembly pb - free assembly preheat & soak temperature min (t smin ) temperature max (t smax ) time (t smin to t smax ) ( t s ) 100 c 150 c 60 - 120 seconds 150 c 200 c 60 - 1 2 0 seconds average ramp - up rate (t smax to t p ) 3 c/second ma x. 3 c/second max. liquidous temperature ( t l ) time at l iquidous (t l ) 183 c 60 - 150 seconds 217 c 60 - 150 seconds peak package body temperature (t p ) * see classification temp in table 1 see classification temp in table 2 time (t p ) ** within 5 c of the spe cified c lassification t emperature ( t c ) 2 0 ** seconds 3 0 ** seconds average r amp - down rate (t p to t smax ) 6 c/second max. 6 c/second max. time 25 c to p eak t emperature 6 minutes max. 8 minutes max. * tolerance for peak profile temperature (t p ) is defined as a supplier minimum and a user maximum. ** tolerance for time at peak profile temperature (t p ) is defined as a supplier minimum and a user maximum. table 2. pb - free process ? classification temperatures (tc) package thickness volume mm 3 <350 volume mm 3 350 - 2000 volume mm 3 >2000 <1.6 mm 260 c 260 c 260 c 1.6 mm ? 2.5 mm 260 c 250 c 245 c 3 2.5 mm 250 c 245 c 245 c table 1. snpb eutectic process ? classification temperatures (tc) package thickness volume mm 3 <350 volume mm 3 3 350 <2.5 mm 235 c 22 0 c 3 2.5 mm 220 c 220 c test item method description solderability jesd - 22, b102 5 sec, 245 c holt jesd - 22, a108 1000 hrs, bias @ t j =125 c pct jesd - 22, a102 168 hrs, 100 % rh, 2atm , 121 c tct jesd - 22, a104 500 cycles, - 65 c~150 c hbm mil - std - 883 - 3015.7 vhbm ? 2kv mm jesd - 22, a1 15 vmm ? 200v latch - up jesd 78 10ms, 1 tr ? 100ma r e l i a b i l i t y t e s t p r o g r a m
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - j u n . , 2 0 1 1 a p w 8 8 1 4 w w w . a n p e c . c o m . t w 2 4 c u s t o m e r s e r v i c e a n p e c e l e c t r o n i c s c o r p . head office : no.6, dusing 1st road, sbip, hsin-chu, taiwan, r.o.c. tel : 886-3-5642000 fax : 886-3-5642050 t a i p e i b r a n c h : 2 f , n o . 1 1 , l a n e 2 1 8 , s e c 2 j h o n g s i n g r d . , s i n d i a n c i t y , t a i p e i c o u n t y 2 3 1 4 6 , t a i w a n t e l : 8 8 6 - 2 - 2 9 1 0 - 3 8 3 8 f a x : 8 8 6 - 2 - 2 9 1 7 - 3 8 3 8


▲Up To Search▲   

 
Price & Availability of APW8814

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X